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APPROXIMATE SOLUTIONS OF THE RUNGE-'KUTTA EQUATIONS 

SUMMARY 

In this article we are concerned with the determination of the para- 
meters  which enter the higher-order Runge-Kutta processes which are used for  
the numerical solution of differential equations. 
increases, the number and the complexity of the system of equations which 
determine the parameters in the Runge-Kutta formulation increases; also, the 
number of the evaluations of the function which is being integrated increases 
rapidly with the order.  Since the latter is frequently the most time consuming 
computational aspect of the integration problem, approximate Runge-Kutta 
formulations which reduce the number of these evaluations without impairing 
the efficiency of the process are acceptable. Some of the techniques for obtain- 
ing these parameters-and the nature of the approximations engendered-are 
examined here for  particular orders  as these involve general aspects which 
persist  and are as pertinent in the higher-order approximations. 

As the order  of the process 

THE RUNGE-KUTTA METHOD 

We briefly indicate the Runge-Kutta process which leads to an algebraic 

Consider the initial value problem 
system of equations whose solutions give the parameters involved. 

y' = f (x ,  y) Y(X0) =yo  * (1) 

We define the sequence of N quantities 



n - i  
$=hf(xo+cuNh, yo+ B Nj k )  j , 

j = i  

and the linear form 

such that the expansion of this in powers of h agrees with the exact solution of 
equation ( i )  to a prescribed number of terms. 

It is the usual practice in determining the parameters in equations(2) 
to expand these functions in Taylor series about the initial point (xo, yo) so that, 

to a given order,  equation ( 3 )  is identical with the Taylor expansion 

which is the true solution of equation ( i )  . Here the superscripts denote total 
derivatives with respect to x,  which in terms of the partial derivatives in- 
creases in complexity as the order increases. On equating the respective 
coefficients of the partial derivative in these expansions to a given order in h,  
we are led to the system of equations which determine the parameters in 
equations ( 2) .  
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Kopal [ I ] ,  using the classical Taylor series expansion, derives - and 
gives a number of solutions for - the Runge-Kutta equations through the fourth- 
order. Shanks [2, 31 and Butcher 14-61, again basing their work on Taylor 
series expansions, show how the Runge-Kutta formulations may be made for 
higher orders. The writeri, in a basically new approach to this'classic Ruga- 
Kutta process, obviates these tedious Taylor expansions and, using a method of 
quadratures, shows how to derive a matrix equation which gives the Runge- 
Kutta equations for any order. 

As the order of the process increases the number and complexity of the 
system of equations which define the parameters in equations (2) also in- 
creases; and the minimum number of derivative evaluations (or', see equation 
(1) , evaluations of the function f (x, y) ) required for an exact solution of the 
Runge-Kutta equations for a given order increases rapidly. ' Since .the most 
time consuming computational aspect is the evaluation of the functions in 
equations (21 ,  approximate solutions which reduce the number of these deriv- 
ative determinations is desirable if it is not attained through an unacceptable 
reduction in  accuracy. 

Shanks [ 2 ,  31 has pioneered in making these approximations and gives 
values for parameters in equations [2] for orders through eight. ' However, 
since only the numerical values of these constructions are given, informative 
material on the techniques for obtaining these parameters, the nature of the 
approximations and e r ro r s ,  etc. , has naturally been suppressed. It is for 
this reason that the detailed analysis is given here for the fifth and sixth-order 
cases; and the nature of the analysis, as well as the e r ro r s  entailed, which are 
shown here,  will frequently demonstrate only simpler aspects of the arithmet- 
ically more complex higher-order cases. 

'Rosen, J. S. : The Runge-Kutta Equations by Quadrature Methods. To 
be published. 

2The relation between the order and the number of function evaluations, 
N, is complex; Butcher 171 deals with this problem. Thus, both Shanks [2]  
and Butcher [4] have shown that the fifth order requires at least six evaluations 
for an exact solution. 

'He also gives some exact solutions; e. g., he gives the parameters 
in equations [ 23 with an adequate value of N to constitute a true solution of the 
Runge-Kutta equations in the classical sense. For the fifth order  Luther and 
Konen 181 and Luther [9 ]  give a number of these classical Runge-Kutta for- 
mulas while Cassity [ I O ]  considers the general solution for this order. 
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THE FIFTH-ORDER RUNGE-KUTTA EQUATIONS IN MATRIX  FORM 

It will be convenient to express the Runge-Kutta equations in a matrix 
form. In addition to the advantage of compactness in this form, generalizations 
may more easily be extended to higher orders. 

Two basic sets of relations between the parameters in the Runge-Kutta 
process may be set down. The first is 

where ( m  + 1) is the order  and N is the number of function evaluations shown 
in equations (2 ) .  The first five equations in Table I are given by equation ( 5) 
when m = 4. 

The second set of relations between the parameters in equations ( 2 )  is 
given by 

We will now give another matrix equation which gives the remainder of 
the Runge-Kutta equations for the fifth order  shown in Table I. 

___  ._ . . 

See footnote I ,  page 3 .  

4 



TABLE I. THE RUNGE-KUTTA EQUATIONS OF THE FIFTH 
ORDER WITH FIVE EVALUATIONS 



Let us define the matrix 

Q =  

+ Y!.O) 853) Y5 ( 0 )  854 OI 
where 

n n 
( w 3 a 3  w4a4 ... 0 a " )  N N  

( 8) 

and 

j =I, 2, ... , m-I . 
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The matrix ( 7 )  then becomes 

Let us also define the matrix whose elements are given by ( 9 )  

s2c = 

1/40 

1/12 

1/15 

- 
1/60 
- 

7 



will give the equations ( 6 * )  through ( 16* ) (except ( 14* )5) in Table I in the 
following order:6 

These' together with equations (5) and ( 6 )  are the Runge-Kutta 
equations for  the fifth order with N = 5. (See footnote I. ) 

REDUCTION OF THE RUNGE-KUTTA EQUATIONS BY SUBSTITUTIONS 

The solutions of the Runge-Kutta equations are effected by arbitrari ly 
assuming (except for some restrictions which will be noted later) the values 
of the parameters Q and with these values solving the first five equations in 

Table I for w ( o r ,  in the more general case , the ( m  + 1) equations given by 

( 5) ) . Since'this procedure may be universally used for all orders  and for either 
exact o r  approximate solutions, the special technique which is applicable to 
this system of equation is outlined in Appendix A .  

i 

i 

5Equation ( 1& ) is obtained by adding ( 14a* ) and ( 14W ) (the equations 
marked # in ( 13) ) . 

It will be observed that the numbers of the equations in Table I are 
distinguished by astrisks. 

'Equations which are not relevant to our process are indicated by dashes 
in the equation list ( 13). 

8 



With a and w known, the remaining Runge-Kutta equations (the equa- 
i i 

tions ( 6 )  and the equations from the appropriate matrix equation analogous to 
equation ( 12) ) are then used to solve for  p..  . It is , therefore, to be noted u 
that any transformation which converts the latter Runge-Kutta equations into 
those given by equation (5) is especially valuable, since this reduces the 
number of equations in the system which determine the parameters. 

We will now show how, by some simple substitutions, we can substanti- 
ally reduce the number of Runge-Kutta equations in Table I. 

In the first column of the matrix (ii) , let us set 

It is immediately evident that equations ( 6* ) , ( 9* ) , ( 11* ) , and ( 12* ) 
in ( 13) will be transformed respectively into ( 3* ) , (4 ) , ( 5* ) and ( 5* ) by 
these substitutions, provided w 2  = 0, so that the former equations may be 
removed from further consideration. 

The display in the equation list ( 13) will now leave effectively the 
following equations: 

8For higher orders  we can also make similar substitutions for the 

i 1 i 
columns in (11); e. g. , we can let c ( ' )  = a ? / 3  ( i  = 3 ,  4, 5.. . . ) where c ( ~ )  is 

defined by equations ( 9) . 
9 



Using the notation in matrices (7) and ( 8) , we can write the following 
equations on the assumption that equation ( 14) is used in the matrix C ( i 1) : 

Let us now assume, for the fifth-order approximation, that y2 (0)  = 0 

and furthermore , that y j  I) is approximately zero; o r ,  sufficiently small so 

that we may neglect it. It is immediately apparent from equations (16) that 
each equation can be paired and that another reduction in the number of 
equations that have to be satisfied has been achieved. Thus equation list (15) 
may now be replaced by 

Our problem is to determine the parameters P . .  from these equations. 
9 

Something about the nature of the necessary approximations to solve these 
equations may be obtained from the following analysis. 

It should be observed that the argument presented here should hold for  
higher orders as the equations 
be more terms. 

(16) will be unchanged except that there will 

10 



It may readily be verified by inspection that the equations ( 13* ) , 
( I& ) , lo ( 15* ) and ( 16* ) may be represented by the matrix equation 

\ O  

The ( 4  x 4) matrix in ( 18) is singular so that the determinant of the 
homogenous system is zero. Therefore, in order that the system (18) have 
solutions, the augmented matrix for the non-homogenous system must be of 
rank three, in which case it may be verified that the following relation must 
hold 

provided the roots a3,  ad, and a5 are distinct. - 

Substituting equation ( 14a) into equation ( 19), we get 

which together with the condition arising from the choice w2 = 0 (see ( 9-A), 
Appendix A) restricts the choice of ai when a5 = I and w2 = 0. 

Neither of the two solutions that satisfy equation (20)  is tenable. a2 can- 
not be zero, nor a3 = 2/5, since by the condition ( i i )  in Appendix A it is associ- 
ated with a4 = I ; and we should recall that a repetitive (Y is excluded. 

We cannot, therefore, satisfy equation (20) exactly; but we can get an 
approximate solution if we make (YO small. We shall proceed on this supposition. 

- ._ - 

lo See footnote 5, page-8. 
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OTHER TRANSFORMATIONS 

We may now impose certain additional conditions on our parameters 
and obtain further significant reductions in the Runge-Kutta equations. HuL 
showed [6 ,  p. 204; 5, p. 81 that what is essentially in our notation, 

n 
~ . p . . = u . ( i - a . ) ,  j = 1 , 2 ,  . . . ,  N ; 8 . . = o y j r i  , 

1 1J J 1 1J i =  I 

will hold if 

y j 0 ) = O  , w 2 = 0  and Q = I  ; N 

and, therefore, as may be seen by using matrix (8) li  

With these relations it is immediately evident with the help of q u a -  
tions ( 16) that the equations (7*), (8 * )  , ( 13* ) and ( 14a*) are satisfied; i. e .  , 
these equations are converted into differences of equations in equation ( 5 ) .  
However, the importance of these transformations lies not only in these simpli- 
fications but also in the fact that they give us simple linear relations from which 
to calculate the pi, in place of the non-linear Runge-Kutta equations. These 
linear relations are obtained simply by equating the two definitions of 

-y:"L the one given by matrix ( 8) and the other by equation (22). 
J 

A special, but important, example of this is the relation 

which follows easily from the definition in matrix (8)  ; but it must be noted it 

~ _ _  . - . _ _  -I__ 

"See Appendix D for establishing the validity of these transformations. 
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holds only in this simple form for  the (N-N) case. Combining now the two 

evaluations for y ( O )  given by equations (22) and (23) we get N- i 

This is an important relation as it immediately gives us one of the parameters 

'N, N-i' 

THE PARAMETERS FOR THE NTH ORDER WITH N EVALUATIONS 

It might be well now to examine the number of equations that are 
available for finding approximate Runge-Kutta solutions for some of the higher 

orders.  The number of parameters p . .  ( j  # I) 
13 

process can readily be seen from equations (2) to be equal to (N-I )  (N-2)/2. 
The number of equations available for finding these parameters are shown in 
Table II. When the number of available equations (given in the last column of 
the table) is less than the number of parameters p. .  to be found, we can make 

up this deficiency by using some of the Runge-Kutta equations. 

for  the (N-N) Runge-Kutta 

13 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administrations 

Huntsville, Alabama, April I O ,  1967 
039-00-24-00-00 

- -  - - - .  - _ _  ~ ~ 

'When j = I, P can be found by using equation ( 6 )  after the other P's 
i j  

have been calculated. 
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L TABLE II. THE NUMBER OF EQUATIONS AVAILABLE FOR FINDING THE PARAMETERS p ( j  + I) 
ij 

Order, No of Parameters 
B ( j  Z I) Required ci(l) = a;/2 

ij 

Number of equations available from: 

Total 
c ( ~ )  = a?/3 (21) and (22) Available 
i 1 di) = 
is (N-2) * is (N-2) Eqs . 

O * *  6 
I 9 
I 11 
I 19 
I 22 

* Whenused 
( 1) **  y2 is assumed to be approximately zero in this case. 



APPENDIX A 
THE WEIGHTS Oi IN TERMS OF a i 

The weights w. in equation ( 5) can be found in terms of a. by an effec- 
1 1 

tively simple method [ i l l .  Though the method is general we shall demonstrate 
this technique for  the fifth-rder cases with five evaluations. ‘ 

Construct the polynomial 

= a 5 + ala4 + %a3 + a3a2 + a4a + a5 

where the a. a r e  parameters in our system of equations ( a i  = 0) .  
1 

We can then construct a second polynomial 

whose coefficients are easily determined from the coefficients in equation ( I )  
and the right hand members in the matrix ( 5). 
of equations in matrix ( 5) are given by [ i l l .  

Then, the weights in the system 

G( ai) 

wi=F1(a i )  ’ i = I ,  2 , 3 , 4 , 5 .  

We shall limit ourselves for the present to the particular set of solutions 
where a5 = I and 0 2 =  0,  so that all subsequent formulas are specialized to these 
values. We should also note that, although ai does not explicity occur in the 
Runge-Kutta equations, since it is equal to zero , it does appear in polynomials 
(I-A) and (3-A).  

‘This is the case where N = m + I in matrix ( 5 ) .  If, as is usually the 
case, N > m +  I we can revert  to the foregoing case by selecting N - (m + I)  
values of w.. 

1 
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Hence, when a i  = 0 and a5 = I, (I-A) takes the special form 

where, since the coefficients in (3-A) are the symmetric functions involving its 
roots, 

while the coefficients of G (a) in (2-A) are given by [Ill 

g4 = 

g3 = ai + 1/2 

g2 = a, + (" + I/3 

gi = a3 + (1/2) a2 + ( 1/3)ai + 1/4 

go = (-1/2) a3 - ( 2/3)+ - ( 3/4) ai - 4/5 . 

We shall also find useful the cubic derived from equation (4-A) 

f ( a )  = a 3 + ( a i + i )  a 2 + ( a , + a i + l )  a + ( q + + + a i + I )  = O  (7-A) 

which has the roots a2, a3 and aq. 

16 



The Condition For o2 = 0 

Since we are assuming that w 2  = 0, an important condition may be 
derived when we note from equation (3-A) that G (a2) = 0 must hold, provided 
F' (a2)  # 0. However, we can exclude F' (a2) = 0, since this would denote a 
double root a2 in F (a). We can expedite the determination of this condition if 
we evaluate instead 

2G(  CY^) - ( 2 ~ 2  + I )  f (a2) = 0 (8-A) 

since by equation (7-A) a2 is also a root of f (a) = 0. 

After  somewhat tedious algebraic operations on substituting the a's 
given in equation ( 5-A) into equation ( 8-A), we get 

This is a relation that must subsist between the two parameters when 
w2 = 0, a i  = 0 and a5 = I. 

Formulae For The Weights Oi 

Since G ( a2) = 0 ,  we can wri te  equation ( 3-A) in the form 

( IO-A) 

where, by dividing G (a) synthetically by (a! - 09) , or  factoring by other means, 
we find 

h ( a )  = cy3 + h p 2  + h, CL! -ths ( 11-A) 

17 



Using equation (9-A), these may be simplified so that we get 

h ( a )  = a3 - (a3 + a 4  + 1/2)a2 + (a3 + a4 - 7/15)a 

- (1/60) [5(03  + a 4 )  - 43 . 

It will be observed that the coefficients of h (a)  in equation ( 13-A) a r e  
independent of a2. 

With the aid of the first equation in (I-A) we can readily find the 
F' (a i ) .  

These are: 

F' (ai) = a 2 a 3 a 4  9 Q i  = 0 

F' ( a 2 1  = q J ( a 2  - a 3 )  (a2 - a 4 )  ( a 2  - I), 
F' ( a 3 )  = a 3 ( a 3  - ~ 2 )  ( a 3  - a 4 )  (a3 - 1) 3 

F' ( a 4 )  = a 4 b 4  - 'y2) ( a 4  - a 3 )  ( a 4  - I), 

F' (a51 = a 5 ( ~ 5  - e 2 )  (a5 - a3) (a5 - 4) 

= (I - a2) (I - a3) (1 - a4) ,  a 5 =  i . 

Using these in ( IO-A) , the formulae for the weights, we get 

W i  = - h ( O ) / a , ' Y 4  

( 12-A) 

( 13-A) 

( 15-A) 

18 



w2 = 0 ( 16-A) 

( 18-A) 

( 19-A) 

It should be observed that, in view of our previous observation on the 
coefficients of h (a) in equation (13-A), the w also are independent of cy2. i 

A n  Alternate Method 

An alternate method (which we will find useful to refer to later) is to 
solve the linear system of equations (5) by determinants. We will illustrate this 
for the sixth-order case ( N  = 6, m = 5) as our method may easily be extended to 
higher orders. 

For  w2 we have the ratio of the two determinants: 

19 



and 

I I I I I i 

( 2  I-A) 

These determinants may be further simplified for we can reduce the 
order of determinants (20-A) and (21-A) by taking the cofactor of I i n  the first 
column. Then if we set 0 6  = 1 and subtract adjacent rows, we get for determinant 
(20-A) 

1/6 

1/12 

1/20 

1/30 

1/6 

which reduces to 

( 22-A) 

( 23-A) 

20 



Similarly determinant (21-A) can be reduced to 

so that w2 ( 1-a2) is given by the ratio of the determinants in (23-A) and 
(24-A) : 

Q2 Q 3  Q 4  Q 5  

2 2 
a; a; Q 4  a5 

a; a; a: a5 3 

cy2 a; a: a!: 

(25-A) 

4 

Similar ratios may be found for the expressions w .  ( I - a!.) . 
1 1 

It is evident that the vanishing of the determinant (23-A) is a condition 
for w2 = 0 provided a6 = i and ai f i (i  = 3, 4 ,  5).  

2To obtain this condition for the fifth-order case delete the last row and 
column in the determinant (21-A) and set a5 = I. The vanishing of this deter- 
minant is the relation (9 ) .  

21 
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APPENDIX B 
THE PARAMETERS FOR THE FIFTH ORDER W i K i  FiVE EVALUATIONS 

We shall now show how the six parameters B ( j  # i )  for the approxi- 

mate fifth-order Runge-Kutta process with five evaluations may be found. We 
assume that the values of cx3 and a 4  have been selected (subjected to the condi- 
tion ( 9-A) ) and that the w ' s  have been obtained as indicated in Appendix A. 
We can now proceed as follows -- expressing the parameters in terms of the 
k l l 0 ~ 1 1 ~ ~ 3 ,  a4 andw :2 

ij 

i 

I) Calculate P32 by equation ( 14a) : 

2) Calculate 8 5 4  by using equation (24) which defines y j o )  in two ways: 

( 0) 
7 4  = 0 6 8 5 4  = w 4 (  i - a 4 )  3 

so that 

3) Calculate 8 4 3  using equation ( 16* ) : 

'When j = I, 8 
have been calculated. 

can be found by using equation (6) after the other p's i j  

2As previously observed the w. are independent of a 2  so that in the sub- 
1 

sequent results a2 is a free parameter. 

22 
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4) Calculate using equation ( 14b) : 

5) calculate 8 5 2  using 7:') = 0: 

6) Calculate Pb3 using equation ( 14c) : 

I 
/353'y3 = z - (P52cr'L + P 5 4 a 4 )  

or, instead use 

( 0 )  - 
y 3  - 0 4 / 3 4  + w 5 P 4  = w 3 (  i - Q 3 )  

the two results should check. 

23 



APPENDIX C 
THE S IXTH-ORDER RUNGE-KUTTA APPROXIMATION 

WITH S i X  EVALUATIONS 

We shall outline a step-by-step procedure for obtaining the parameters 
for  the sixth-order Runge-Kutta approximation with six evaluations. 

A s  outlined in Appendix B for the fifth-order case, we can in a similar 
way select values for ai (with some restrictions) and find the u . 
assume equations (21) to hold, it is true that 
last relation which dictates a condition between the ai ( i  = 3,  4, 5) analogous 

to (9-A) , and which we will not stop to derive. 

As we 
i 

= 1 and w2 = 0; and it is this 

A s  we may see from Table I1 we can assume that the following hold: the 
four relations analogous to equation ( 14) ;I the four relations in equations (21) 

and ( 22) ; and finally, that y j  = 0: a total of nine relations for ten unknown 
parameters. We are thus free to make use of another Runge-Kutta equation; 
and we might make use of the equation analogous to equation ( 16* ) which was 
found useful in the fifth-order case. This is:3 

We now proceed as follows: 

I) Calculate 832 using equation ( 14a) : 

1 C ( i ) = a ? / 2  ( i = 3 , 4 , 5 , 6 ) .  
i 1 

2See footnote 9 .  Since the equations in ( 16) will hold for the sixth-order 
case also (except for additional te rms) ,  it may be seen that in  this group (IO*) 

would revert to equation ( 14b* ) if we set yi 
the simplifications necessary to reduce the complexity of the computations 
given here. 

= 0. This assumption is vital to 

3 ~ e e  footnote I ,  page 3 .  

24 
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( 0) 
2) Using the relations y5 = wgB65 = w5 ( l-a5) given by equation (24) : 

(The subsequent /3's are all calculated in terms of the unknown ,854.) 

3) Using equation (I-C) calculate /343 : 

- 2 I 
= 6! w6865'Y: ) 8 5 4  

4) Calculate 8 4 2  using equation ( 14b) : 

5) Solve for 85.2 using the relations: 

which by subtraction gives (Since a6 = I) 

6) Solve (in terms of P 5 4 )  for &3 using 

25 



7) Substitute the foregoing values of 8.. into equations (21) and (22) 
1J 

and y4 .are expanded by equatibns ( 8 )  and find and ( 0) (0)  ( 0) 
where 79 3/3 

in terms of p54. 

8) Finally determine p54 by substituting the above values of p.. into 
11 
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APPENDIX D 
THE VALIDITY OF THE TRANSFORMATION = a i  ( I  ai) 

It would be desirable to examine the validity of assuming equations (21) 
and (22) when seeking approximate Runge-Kutta solutions. We will illustrate 
this with an analysis for the sixth-order case with six evaluations as the pro- 
cedure can easily be adapted to higher order cases. 

Let us examine the effect of these transformations on the linear 
system analogous to (6* ) , (7*) and ( 8* ) -- the equations in the first row in 
the equation list ( 13). (See also equations ( 16). ) For the sixth-order there 
will be an additional equation in the system and each equation will have an addi- 
tional term; these will be given by (see footnote 1 page 3 , Table I) 

n =  I, 2, 3, 4 . 

It is immediately evident that the substitutions of equations (21) and (22) 
into the system (1-D) gives us  simple combinations of equations in system (5)  
if (I! 6 = I , so that the advantage of these substitutions is apparent. However, we 
must see if equations (21) and (22) are acceptable as solutions of the system 
( I-D). 

If we solve the linear system (I-D) for yz(o)  using determinants, we get 

In the same way we can quite readily justify the other transformations 
in equation (22).  
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